Semantic language models with deep neural networks
نویسندگان
چکیده
Spoken language systems (SLS) communicate with users in natural language through speech. There are two main problems related to processing the spoken input in SLS. The first one is automatic speech recognition (ASR) which recognizes what the user says. The second one is spoken language understanding (SLU) which understands what the user means. We focus on the language model (LM) component of SLS. LMs constrain the search space that is used in the search for the best hypothesis. Therefore, they play a crucial role in the performance of SLS. It has long been discussed that an improvement in the recognition performance does not necessarily yield a better understanding performance. Therefore, optimization of LMs for the understanding performance is crucial. In addition, long-range dependencies in languages are hard to handle with statistical language models. These two problems are addressed in this thesis. We investigate two different LM structures. The first LM that we investigate enable SLS to understand better what they recognize by searching the ASR hypotheses for the best understanding performance. We refer to these models as joint LMs. They use lexical and semantic units jointly in the LM. The second LM structure uses the semantic context of an utterance, which can also be described as “what the system understands”, to search for a better hypothesis that improves the recognition and the understanding performance. We refer to these models as semantic LMs (SELMs). SELMs use features that are based on a well established theory of lexical semantics, namely the theory of frame semantics. They incorporate the semantic features which are extracted from the ASR hypothesis into the LM and handle long-range dependencies by using the semantic relationships between words and semantic context. ASR noise is propagated to the semantic features, to suppress this noise we introduce the use of deep semantic encodings for semantic feature extraction. In this way, SELMs optimize both the recognition and the understanding performance.
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملQuestion Answering Based on Distributional Semantics
An NLP application for question answering provides an insight into computer’s understanding of human language. Many areas of NLP have recently built on deep learning and distributional semantic representation. This paper seeks to apply distributional semantic models and convolutional neural networks to the question answering task.
متن کاملDeep Learning for Semantic Similarity
Evaluating the semantic similarity of two sentences is a task central to automated understanding of natural languages. We discuss the problem of semantic similarity and show that the use of recurrent and recursive neural networks can provide a 16% to 70% improvement over baseline models.
متن کاملEvaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution
Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...
متن کاملApplication of Neural Networks in the Semantic Parsing Re-Ranking Problem
Automatic program generation allows end-users to benefit from greatly from increased productivity. However, general Natural Language Programming tools fail to provide the benefits of the ambiguity and expressivity of English. We reduce program generation into a semantic parsing problem. Given a command and input, we procedurally generate a large set of candidate programs, and then align the com...
متن کاملSmall-world Structure in Children’s Featured Semantic Networks
Background: Knowing the development pattern of children’s language is applicable in developmental psychology. Network models of language are helpful for the identification of these patterns. Objectives: We examined the small-world properties of featured semantic networks of developing children. Materials & Methods: In this longitudinal study, the featured semantic networks of children aged 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Speech & Language
دوره 40 شماره
صفحات -
تاریخ انتشار 2016